Как улучшить ответ нейросети: примеры и инструкция

Библиотека совместима с API OpenAI и работает на различном оборудовании, например NVIDIA и AMD GPU, Intel CPU и GPU. В моих экспериментах LoRA дает лучшие результаты на моделях с как минимум 7B параметрами, в то время как мои попытки дообучить модель GPT-2 с 1.5B и 774M не дали достойных результатов. Самое свежее исследование применения LoRA решает проблему дообучения больших языковых моделей Mixture-of-Experts (MoE), дополняя отдельную подстройку маршрутизационной части архитектуры MoE [18]. В 2021 году был опубликован алгоритм LoRA для дообучения языковых моделей [14]. Он приносит возможность дообучения небольшой части параметров модели, с незначительным падение точности, по отношению к полному дообучению.

Давайте представим, что вы — языковая модель


Если модель узкоспециализированная, то и данные для нее берут определенного формата, например научные статьи по конкретной теме или комментарии в интернете. А, например, всем известная ChatGPT обучалась на данных очень разного формата, чтобы стать универсальной. Это быстрая и удобная библиотека для инференса и обслуживания больших языковых моделей. Она моментально генерирует текст благодаря современным методам обработки запросов, эффективному управлению памятью и поддержке непрерывной пакетной обработки запросов. Фреймворк vLLM также обеспечивает быструю работу модели с помощью CUDA/HIP-графов. http://istiqbolsari.uz/user/AEO-Pro/

Хабр Q&A — вопросы и ответы для IT-специалистов

Хотя вы можете попытаться получить нужный текст с помощью другой формулировки, вероятно, это не даст большой пользы. Однако не стесняйтесь продолжать пробовать с различными формулировками или перспективами. Если вы хотите попробовать Epsilon Workflow в своих проектах и на своих данных, свяжитесь с нами для демонстрации. С помощью Epsilon Workflow это можно сделать без необходимости писать код и знать Python и другие языки программирования. Модель LLAMA2 получает найденные на предыдущем шаге фрагменты и использует их в качестве контекстных подсказок. Эти модели предназначены для изучения паттернов, структур и семантики человеческого языка на основе огромных объемов данных. Приготовьтесь отправиться в приключение, которое раскроет тайны языковых моделей и их способность изменить наш цифровой мир. Например, vLLM, о которой рассказывали в статье, или другие популярные. https://www2.hamajima.co.jp:443/~mathenet/wiki/index.php?bankestephenson175457 Гибридный подход, который сочетает использование CPU и GPU, позволяет эффективно работать с моделями, которые не помещаются в VRAM. Для быстрого инференса важно иметь SSD с высоким уровнем производительности и достаточно свободного места, так как некоторые модели могут занимать сотни гигабайт данных. Для обучения и инференса LLM нужен мощный сервер с высокопроизводительными процессорами и видеокартами. Нейросеть не только отказалась давать ответ, но и пригрозила их вообще «забанить», если они еще будут спрашивать что-то подобное. Они рассказали нейросети, что пишут сценарий фильма, и что главный герой затевает что-то недоброе и решает изготовить взрывчатку. И попросили нейросеть помочь им сделать сцену посещения хозяйственного магазина максимально реалистичной. И она стала им помогать, то есть оказалось, что она знает как ответить на этот вопрос. Это помогает моделям понимать смысл текста и генерировать контекстно адекватные ответы.● Контекстуальное значение слов. Одно и то https://aitoday.live же слово может иметь разные значения в зависимости от контекста. Модели, подобные BERT, обучаются на двунаправленных текстах, что позволяет им учитывать окружающие слова для точного понимания значения каждого отдельного слова.● Отношения между сущностями. Модели также учатся определять отношения между разными сущностями в тексте, такими как люди, места, объекты и события. Будущее языковых моделей таит в себе огромные возможности для прорывов и приложений. Языковые модели учатся на огромных объемах данных, которые могут случайно отражать социальные предубеждения в обучающих данных. Другие стратегии, такие как поиск по лучу, сосредоточены на поиске наиболее вероятных последовательностей слов для оптимизации согласованности и контекстуальности. Эта стратегия добавляет модели непредсказуемости, позволяя создавать разнообразные и инновационные ответы. Они автоматизируют множество задач, связанных с пониманием естественного языка. На первом этапе, называемом предварительным обучением, модель обучается предсказывать следующее слово на основе огромного объёма текстов. В процессе она «запоминает» синтаксические, грамматические и семантические структуры языка, а также получает общее понимание многих тем и понятий. Первые языковые модели были статистическими, основанными на вероятностном алгоритме цепей Маркова, более поздние имели в своей основе рекуррентные нейронные сети (RNN). Это вид нейронных сетей, предназначенный для обработки последовательных данных. Второй этап обучения модели — Supervised fine-tuning или обучение с учителем. Это специалисты, которые пишут эталонные ответы на разнообразные запросы (промты). Большие языковые модели, такие как GPT, построены на архитектуре трансформеров, которая особенно подходит для обработки длинных текстовых последовательностей.